
1/31/2002 1

SelfSelf--Adaptive Discovery Mechanisms Adaptive Discovery Mechanisms
for Optimal Performance in Faultfor Optimal Performance in Fault--Tolerant NetworksTolerant Networks

Kevin Mills and Doug Montgomery

DARPA FTN PI Meeting
July 29, 2001

Survivable Software for Harsh Environments

1/31/2002 2

Presentation OutlinePresentation Outline
Quick Introduction to the Project – Quad Chart

Introduction to Dynamic Discovery Protocols
Discovery Protocols in Essence
Foundation for Fault-Tolerant Distributed Systems

Related NIST Work on Discovery Protocols
Modeling, Analysis, and Measurement
Three Example Projects

Details Regarding Our Fault-Tolerant Networks Project
Objective and Motivation
Example Problem from One Discovery Protocol
Selected Control Parameters and Adaptive Behaviors
Research Plan

Conclusions

Self-Adaptive Discovery Mechanisms
for Optimal Performance in Fault-Tolerant Networks

Impact
Influence the design of next-generation
discovery protocols so they can self-
configure tunable parameters and can
adjust in response to network dynamics

Influence the design of next-generation
simulation systems to provide better
support for simulating controlled and
continuous change in network topologies
and for collecting related measurements

Schedule

Innovations
Read-and-react decentralized discovery
mechanisms that observe the network state,
estimate and adjust relevant parameters,
measure effects, and adapt as necessary

Emerging industry discovery protocols assume
parameters configured and tuned by hand and
network topology evolves slowly. Assumptions
invalid for most military scenarios (fast response,
high mobility, cyber and physical attacks, and
jamming of communication channels).

Simulation modeling techniques to create
and measure the effects of continuous,
controlled changes in network topologies

Kevin Mills and Doug Montgomery NIST

Survivable Software for Harsh EnvironmentsSurvivable Software for Harsh Environments

Start
June 01

Jan 02
Document
candidate
self-adaptation
algorithms

Simulation Models
and Benchmark Results
for UPnP and Jini

July 02

Jan 03
Simulation Results
for selected self-
adaptation algorithms

Prototype implementation
of selected self-adaptation
algorithms in publicly
available reference software

July 03

Jan 04
Validation results
for prototype
reference
implementations

Deliver
packaged
code
April 04

Start
June 01

Jan 02
Document
candidate
self-adaptation
algorithms

Simulation Models
and Benchmark Results
for UPnP and Jini

July 02

Jan 03
Simulation Results
for selected self-
adaptation algorithms

Prototype implementation
of selected self-adaptation
algorithms in publicly
available reference software

July 03

Jan 04
Validation results
for prototype
reference
implementations

Deliver
packaged
code
April 04

1/31/2002 4

Dynamic Discovery Protocols in EssenceDynamic Discovery Protocols in Essence
Dynamic discovery protocols enable network elements (including software

clients and services, as well as devices):
(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate to meet

an application need, and
(4) to detect and adapt to changes in network topology.

Selected FirstSelected First--Generation Dynamic Discovery ProtocolsGeneration Dynamic Discovery Protocols
Universal

Plug and Play

Universal

Plug and Play

3-Party
Design

2-Party
Design

Adaptive
2/3-Party
Design

Vertically
Integrated
Design

Network-
Dependent
Design

Network-
Dependent
Design

1/31/2002 5

• In the future, all software systems will be distributed systems
written to operate over a network, where conditions vary.

• Dynamic discovery protocols provide a foundation upon which
such distributed systems will be constructed.

• Understanding the current (first) generation of discovery protocols
essential to enable the military to establish requirements and to help
industry to improve designs for the second and subsequent
generations.

Dynamic Discovery Protocols Provide Foundation Dynamic Discovery Protocols Provide Foundation
for Faultfor Fault--Tolerant Distributed SystemsTolerant Distributed Systems

NIST Investigating Emerging Commercial DesignsNIST Investigating Emerging Commercial Designs
• Modeling and analyzing the structure, behavior, performance and

logical properties of selected discovery protocols
(Jini, UPnP, and SLP)

• Measuring the performance properties of the current reference
software that implements selected discovery protocols
(Jini, UPnP, and SLP)

1/31/2002 6

• Model Discovery Protocol specifications using Architectural
Description Languages (ADLs) and associated tools

• Analyze Discovery Protocol models to assess consistency, correctness,
and completeness under conditions of dynamic change.

• Compare and contrast our models with regard to function, structure,
behavior, performance, complexity, and scalability under conditions of
dynamic change.

Technical Approach to Modeling & AnalysisTechnical Approach to Modeling & Analysis

Technical Approach to MeasurementTechnical Approach to Measurement
• Design technology-independent benchmark service and scenarios.

• Create synthetic workload generation tools for emulating the
behavior of moderate-scale dynamic ad hoc networking environments.

• Develop implementation-independent performance measurement
methodologies and tools for service discovery protocols (SDPs) and
required supporting protocols.

EXAMPLES FOLLOW ON NEXT THREE SLIDESEXAMPLES FOLLOW ON NEXT THREE SLIDES

1/31/2002 7

Example #1: Define Generic Structural Model (UML) Example #1: Define Generic Structural Model (UML)
for Servicefor Service--Discovery DomainDiscovery Domain

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
Provider

Service
Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache Parameter

Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
Provider

Service
Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache Parameter

Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Provides Foundation for Measurements and ComparisonsProvides Foundation for Measurements and Comparisons

1/31/2002 8

Example #2: Construct, Exercise, and AnalyzeExample #2: Construct, Exercise, and Analyze
Executable Model from Specifications ofExecutable Model from Specifications of Discovery ProtocolsDiscovery Protocols

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

Understand Logical and Performance Properties Understand Logical and Performance Properties
Arising from Collective BehaviorArising from Collective Behavior

1/31/2002 9

Example #3: Construct Synthetic Workload
Generation and Measurement Tools

Objective: Emulate large, dynamic environments of 100’s of devices/services
and 10’s of control points / clients.

• Dynamic devices provided the benchmark service.
• Scripted control points execute measurement scenarios.

• SDP Experimenters Toolkits
– Drive real SDP implementations
– Emulate the behavior of a large number of

dynamic devices
– Emulate the behavior of control points and

provide scripted behavior for testing
– Jini & UPnP Initial development complete

– SunMS Jini, Intel UPnP on Linux platforms.
– Achieved 100’s of devices and 10’s of control points.

S SSS S S S

M DD C C C

TSTS

TS TS TS

SS SSSSSS SS SS SS

MM DDDD CC CC CC

TSTSTSTS

TSTS TSTS TSTS

Measure Latency and Overhead in ModerateMeasure Latency and Overhead in Moderate--Scale Scale
Deployment of Discovery Protocol ImplementationsDeployment of Discovery Protocol Implementations

1/31/2002 10

• Emerging designs for military fault-tolerant systems (e.g., OpenWings,
OASIS, CoABS) rely on discovery-based component architectures to enable
self-organizing and self-healing behavior

• The discovery protocols underlying such systems include mechanisms that
permit network elements to continue to function as the topology varies

• However, many performance aspects of these protocols appear sensitive to
parameter settings whose optimum values depend upon network topology

• While such parameters may be manually configured and tuned in relatively
small, static environments, their management in larger scale, highly dynamic
environments requires decentralized real-time measurement and control

Objective for Our FTN ProjectObjective for Our FTN Project
Research, design, evaluate, and implement self-adaptive algorithms

to improve the performance of service discovery protocols
for use in fault-tolerant networks.

MotivationMotivation

1/31/2002 11

Sample Problem Based on Measurements Sample Problem Based on Measurements
of Universal Plugof Universal Plug--andand--PlayPlay

UPnP Discovery Performance in a 64-Node Network

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000

Value of Tunable Jitter Parameter (in milliseconds)

N
um

be
r o

f D
ev

ic
es

 D
is

co
ve

re
d

Average Latency Searching for a Specific Device
in a 64-Node UPnP Network

0

1

2

3

4

0 2 4 6 8

Jitter Parameter Value (seconds)

Av
er

ag
e

Q
ue

ry
 L

at
en

cy

(s
ec

on
ds

)

1/31/2002 12

Selected Control Parameters of InterestSelected Control Parameters of Interest
Universal Plug-and-Play

announcement interval
response jitter time
entry expiration time
requested and granted subscription expiration times
maximum response time
message repeat count and interval

Jini™ Networking Technology
announcement and probe intervals
requested and granted lease expiration times
maximum lookup servers to discover
maximum matches returned

Service Location Protocol
announcement and probe intervals
entry lifetime
minimum refresh interval
maximum response time
message repeat period and interval

1/31/2002 13

Possible Adaptive Behaviors of InterestPossible Adaptive Behaviors of Interest

Universal Plug-and-Play
dynamic reassignment of multicast group membership
response of device to changes in device descriptions
cache filtering, purging, and triggering in control points
query behavior in control points

Jini™ Networking Technology
dynamic reassignment of logical group membership
dynamic reassignment of multicast group membership
injection of event filters into services
dynamic management of lookup services in response to load variation

Service Location Protocol
dynamic mode switching between 2-party and 3-party operation
dynamic management of cache flushing by directory service agents
dynamic management of scopes

1/31/2002 14

Research PlanResearch Plan
Model and analyze existing protocols (UPnP, Jini, and SLP)

develop simulation models for each protocol
determine appropriate techniques to model link and node failures
establish performance benchmarks based on default or recommended
parameter values and on required or most likely implementation of behaviors

Investigate distributed adaptation algorithms to control parameter values
(and also consider selected adaptive behaviors)

devise several algorithms to adjust similar control parameters in each protocol
simulate performance of each algorithm against benchmark performance
select most promising algorithms for further development

Implement and validate selected algorithms in publicly available reference
software

modify available implementation of UPnP, Jini, or SLP
deploy in service-discovery test bed (now under development at NIST)
validate simulated results with live experiments

Expected results: published papers, simulation models, reference software,
experiment data, influence on design of future dynamic discovery
protocols

1/31/2002 15

ConclusionsConclusions
Emerging designs for military fault-tolerant systems rely on discovery-based
component architectures to enable self-organizing and self-healing behavior

Emerging industry discovery protocols assume parameters configured and tuned by
hand and network topology evolves slowly

Such assumptions are invalid for most military scenarios, which require fast
response, exhibit high mobility, suffer cyber and physical attacks, as well as
jamming of communication channels

We propose a solution: read-and-react decentralized discovery mechanisms that
observe the network state, estimate and adjust relevant parameters, measure effects,
and adapt as necessary

How will such mechanisms perform under military and commercial conditions?
What will be the cost of such mechanisms in complexity and overhead?
Can existing commercial protocols accommodate such mechanisms?

Success in this research would enable the military to leverage future generations of
dynamic discovery protocols as a foundation for survivable software architectures

